These notes were adapted from Jon Kotker’s 00P lecture from Summer 2012. Thanks Jon!

- Objects are data structures that are combined with associated behaviors.

- They are “smart bags” of data that have state and can interact.

- Functions can do one thing; objects can do many related things.

- Previously, functions “disappear” after they were called. Now, with OOP, we can call
functions and store the values they return within the object itself.

e basics.

Every person (Object) is a Human (Class)
Classes are basic templates for objects
An object is an instance of a class
A person is an instance of a human
A single person (instance) has a name (Instance variable) and age (Instance variable)
Objects and instance variables have a “has-a” relationship
An instance variable is an attribute specific to an instance.
An object has an instance variable.
A person has a brain
A single person can eat (method) and sleep (method)
Methods describe a certain “behavior” of an object
The population (class variable) of the Earth is 7 billion
Class variable: attributes for the class as a whole, shared by all instances of a class

class Human:
population = 7,000,000 #class variable

def _init_ (self, name, age):
self.name = name #instance variable
self.age = age #instance variable

def eat(self, food): #method!
print(“mmm, I love eating “ + str(food))

def sleep(self): #method
print(“zzZZ2ZzzzZZZ”)

Potemeon

Class Pokemon:
total_pokemon = 0 #
def __init_ (self, name, owner, hit_pts):

self.name = name #

self.owner = owner

self.hp = hit_pts

Pokemon.total_pokemon += 1

Class variables are referenced using the name of the class since they don’t belong to a specific

instance

def increase_hp(self, amount):
self.hp += amount

def decrease_hp(self, amount):

self.hp -= amount
if self.hp < 0:
self.hp = 0

def get_name(self): #selector
return self.name

def get owner(self):
return self.owner

def get _hit_pts(self):
return self.hp

Note: Every method needs self as an argument! This allows you to reference a specific instance of the class
Think of it like this: how else will you reference the instance uniquely?

>>> ashs_pikachu = Pokemon(‘Pikachu’, fAsh’, 300)
>>> mistys_togepi = Pokemon(‘Togepi’, ‘Misty’, 245)

The above two statements instantiate new objects
When you instantiate a new object, the _init__ method of the class is called.
Objects can only be created by the constructor
We've created two new objects! Each of which have their own set instance variables (name, owner, hp) and bound
methods (increase_hp, decrease_hp, get_name, get_owner, get_hit_pts)
- Bound methods are methods bound to the instance

>>> mistys togepi.get owner() # Alternatively, Pokemon.get owner(mistys togepi)

>>> ashs_pikachu.get_hit pts()

>>> ashs_pikachu.increase_hp(150) # Alternatively, Pokemon.increase_hp(ashs_pikachu, 150)
>>> ashs_pikachu.get_hit_pts()

Write a method attack that takes another Pokemon object as an argument.

When the method is called on a Pokemon object, the object screams (prints!) its name and reduces the HP of the
opposing Pokemon by 50.

def attack()
>>> mistys_togepi.get_hp()
>>> ashs_pikachu.attack(mistys_togepi)
Pikachu!
>>> mistys_togepi.get _hp()
195

€€

YOUR CODE HERE

There are several different types of Pokemon which differ in the amount of points lost by its opponent in an attack.

The only method that changes from one type of Pokemon to another is the attack method. Everything else stays the
same! We want to avoid duplicating code.

The key idea of inheritance is that classes can inherit methods and instance variables from other classes.

class WaterPokemon(Pokemon): # the Pokemon class is the superclass of the WaterPokemon class

def _init ():

the Pokemon class already has an attack method, this attack method in the WaterPokemon subclass
overrides the previous attack method
def attack(self, other):

other.decrease_hp(75)

class ElectricPokemon(Pokemon):
def _init_ (self, name, owner, hp, origin):
YOUR CODE HERE

def attack(self, other):
other.decrease_hp(60)
>>> ashs_squirtle = WaterPokemon(‘Squirtle’, ‘Ash’, 314)

>>> mistys_togepi = Pokemon(‘Togepi’, ‘Misty’, 245)
>>> ashs_squirtle.get _hit pts() # WaterPokemon doesn’t have a get hit pts method defined?!

>>> ashs_squirtle.attack(mistys togepi)

>>> mistys togepi.get hit pts()

