OBJECT ORTENTED PROGRAMMING

Quick Review -- Basics

Every person (Object) is a Human (Class)
Classes are basic templates for objects
An object is an instance of a class
A person is an instance of a human
A single person (instance) has a name (Instance variable) and age (Instance variable)
Objects and instance variables have a “has-a” relationship
An instance variable is an attribute specific to an instance.
An object has an instance variable.
A person has a brain
A single person can eat (method) and sleep (method)
Methods describe a certain “behavior” of an object
The population (class variable) of the Earth is 7 billion
Class variable: attributes for the class as a whole, shared by all instances of a class

Warm Up -- Animals

1. An animal may be distinguished by number of legs, number of eyes, a sound, and color.
Design an Animal class that keeps track of these features, as well as the total number of
animals that have been created.

2. Now, let’s differentiate a bit between these animals. Design two classes -- one for a dog, and
one for a cat.



Queue

Cross out as incorrect and unnecessary lines in the following code so that the doctests pass for
both classes.

class Queue(object):
"""Creates a Queue, which is like a list that supports 2 operations:
enqueue (adding an item to the back of the queue) and
dequeue (removing an item from the front of the queue).
The queue cannot enqueue past maximum capacity.

>>> q = Queue(2)
>>> g.enqueue(5)
>>> g.enqueue(3)
>>> q.dequeue()
5
>>> g2 = Queue(1)
>>> g2.enqueue(90)
>>> g2.enqueue(2)
Out of space
self.items = []
def __init__ (self, capacity, items):
def __init_ (self, capacity):
self.capacity = capacity
self.enqueue(capacity)
self.items = []
def enqueue(self, item):
if len(self.items) == self.capacity:
if len(self.items) == capacity:
items.append(self, item)
self.items.append(item)
else:
print('Out of space')
def dequeue():
def dequeue(self):
self.items.pop(9)
return self.items.pop(0)
return self.items.pop()

class PriorityQueue(Queue):
"""A PriorityQueue is like a sorted list that supports two operations:
enqueue (adding an item to the PriorityQueue) and
dequeue (removing the smallest item from the PriorityQueue).

>>> p = PriorityQueue(2)
>>> p.enqueue(5)
>>> p.enqueue(3)



>>>
3

>>>
>>>
>>>
Out

def

def

def

p.dequeue()

p2 = PriorityQueue(1)
p2.enqueue(90)
p2.enqueue(2)

of space

__init__ (self, capacity):
Queue.__init__ (capacity)
Queue.__init__ (self, capacity)
self.items = []
self.items.sort()
enqueue(self, item):
self.enqueue(item)
Queue.enqueue(self, item)
if len(self.items) == Queue.capacity:
print('Out of space')
self.items.sort()
dequeue(self):
return self.dequeue()
return Queue.deqeue(self)



